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ABSTRACT 
Making personalized recommendation for cold-start users, who 
only have a few interaction histories, is a challenging problem in 
recommendation systems. Recent works leverage hypernetworks to 
directly map user interaction histories to user-specifc parameters, 
which are then used to modulate predictor by feature-wise linear 
modulation function. These works obtain the state-of-the-art per-
formance. However, the physical meaning of scaling and shifting in 
recommendation data is unclear. Instead of using a fxed modulation 
function and deciding modulation position by expertise, we propose 
a modulation framework called ColdNAS for user cold-start prob-
lem, where we look for proper modulation structure, including func-
tion and position, via neural architecture search. We design a search 
space which covers broad models and theoretically prove that this 
search space can be transformed to a much smaller space, enabling 
an efcient and robust one-shot search algorithm. Extensive exper-
imental results on benchmark datasets show that ColdNAS consis-
tently performs the best. We observe that diferent modulation func-
tions lead to the best performance on diferent datasets, which vali-
dates the necessity of designing a searching-based method. Codes 
are available at https://github.com/LARS-research/ColdNAS. 

CCS CONCEPTS 
• Information systems → Recommender systems; • Comput-
ing methodologies → Supervised learning; Neural networks. 
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1 INTRODUCTION 
Recommendation systems (RSs) [32] target at providing suggestions 
of items that are most pertinent to a particular user, such as movie 
recommendation [12] and book recommendation [47]. Nowadays, 
RSs are abundant online, ofering enormous users convenient ways 
to shopping regardless of location and time, and also providing 
intimate suggestions according to their preferences. However, user 
cold-start recommendation [33] remains a severe problem in RSs. 
On the one hand, the users in RSs follow long tail efect [27], some 
users just have a few interaction histories. On the other hand, new 
users are continuously emerging, who naturally have rated a few 
items in RSs. Such a problem is even more challenging as modern 
RSs are mostly built with over-parameterized deep networks, which 
needs a huge amount of training samples to get good performance 
and can easily overft for cold-start users [36]. 

User cold-start recommendation problem can naturally be mod-

eled as a few-shot learning problem [38], which targets at quickly 
generalize to new tasks (i.e. personalized recommendation for cold-
start users) with a few training samples (i.e. a few interaction his-
tories). A number of works [6, 19, 24, 37, 44] adopt the classic 
gradient-based meta-learning strategy called model-agnostic meta-

learning (MAML) [8], which learns a good initialized parameter 
from a set of tasks and adapts it to a new task by taking a few steps 
of gradient descent updates on a limited number of labeled samples. 
This line of models has demonstrated high potential of alleviating 
user cold-start problem. However, gradient-based meta-learning 
strategy require expertise to tune the optimization procedure to 
avoid over-ftting. Besides, the inference time can be long. 

Instead of adapting to each user by fne-tuning via gradient de-
scent, another line of works uses hypernetworks [11] to directly 
map user interaction history to user-specifc parameters [6, 7, 21, 
26]. These modulation-based methods consist of embedding layer, 
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Figure 1: Architecture used in user cold-start models, which 
consists of embedding layer, adaptation network and predic-
tor. Modulation structure in red dotted lines are the searching 
target of our paper. 

adaptation network and predictor. The adaptation network gen-
erates user-specifc parameters, which are used to modulate the 
predictor in the form of a modulation function. Particularly, they all 
adopt feature-wise linear modulation function (FiLM) [28], which 
modulates the representation via scaling and shifting based on the 
conditioning information, to modulate the user cold-start models to 
obtain user-specifc representation. Although FiLM has been proved 
to be highly efective in on images [31] and graphs such molecules 
and protein-protein interaction graphs [4], applying scaling and 
shifting on user interaction history has rather obscure physical 
meaning. Moreover, choosing where to modulate is hard to decide. 
Existing works modulate diferent parts of the model, such as last 
layers of the decoder [21] and most layers in the model [26]. How 
to modulate well for diferent users, and how to choose the right 
functions at the right positions to modulate, are still open questions. 

In this paper, we propose ColdNAS to fnd appropriate mod-

ulation structure for user cold-start problem by neural architec-
ture search (NAS). Although NAS methods have been applied in 
RSs [9, 39], the design of NAS methods are problem-specifc. For 
user cold-start problem, it is still unknown how to (i) design a 
search space that can cover efective cold-start models with good 
performance for various datasets, and (ii) design an efcient and 
robust search algorithm. To solve the above challenges, we design 
a search space of modulation structure, which can cover not only 
existing modulation-based user cold-start models, but also contain 
more fexible structures. We theoretically prove that the proposed 
search space can be transformed to an equivalent space, where we 
search efciently and robustly by diferentiable architecture search. 
Our main contributions are summarized as follows: 

• We propose ColdNAS, a modulation framework for user cold-
start problem. We use a hypernetwork to map each user’s history 
interactions to user-specifc parameters which are then used 
to modulate the predictor, and formulate how to modulate and 
where to modulate as a NAS problem. 

• We design a search space of modulation structure, which can 
cover not only existing modulation-based user cold-start models, 
but also contain more expressive structures. As this search space 
can be large to search, we conduct search space transformation 
to transform the original space to an equivalent but much smaller 
space. Theoretical analysis is provided to validate its correctness. 
Upon the transformed space, we then can search efciently and 
robustly by diferentiable architecture search algorithm. 

• We perform extensive experiments on benchmark datasets for 
user cold-start problem, and observe that ColdNAS consistently 
obtains the state-of-the-art performance. We also validate the 
design consideration of search spaces and algorithms, demon-

strating the strength and reasonableness of ColdNAS. 

2 RELATED WORKS 

2.1 User Cold-Start Recommendation 
Making personalized recommendation for cold-start users is partic-
ular challenging, as these users only have a few interaction histories 
[33]. In the past, collaborative fltering (CF)-based [13, 18, 34] meth-

ods, which make predictions by capturing interactions among users 
and items to represent them in low-dimensional space, obtain lead-
ing performance in RSs. However, these CF-based methods make 
inferences only based on the user’s history. They cannot handle 
user cold-start problem. To alleviate the user cold-start problem, 
content-based methods leverage user/item features [33] or even 
user social relations [20] to help to predict for cold-start users. The 
recent deep model DropoutNet [36] trains a neural network with 
dropout mechanism applied on input samples and infers the missing 
data. However, it is hard to generalize these content-based methods 
to new users, which usually requires model retraining. 

A recent trend is to model user cold-start problem as a few-shot 
learning problem [38]. The resultant models learn the ability to 
quickly generalize to recommend for new users with a few interac-
tion histories. Most works mainly follow the classic gradient-based 
meta-learning strategy MAML [8], which frst learns a good ini-
tialized parameter from training tasks, then locally update the pa-
rameter on the provided interaction history by gradient descent. In 
particular, existing works consider diferent directions to improve 
the performance: MeLU [19] selectively adapts model parameters 
to the new task in the local update stage, MAMO [6] introduces 
external memory to guide the model to adapt, MetaHIN [24] uses 
heterogeneous information networks to leverage the rich semantics 
between users and items, REG-PAML [44] proposes to use user-
specifc learning rate during local update, and PAML [37] leverages 
social relations to share information among similar users. While 
these approaches can adapt models to training data, they are com-

putationally inefcient at test-time, and usually require expertise 
to tune the optimization procedure to avoid over-ftting. 

Another line of few-shot learning methods leverages hypernet-
works [11] to directly map training data to the desired parame-

ters. Existing works [7, 21, 26] in this line all choose to adopt the 
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feature-wise linear modulation function (FiLM) [28]. By design, 
FiLM modulates the representation via scaling and shifting based 
on the conditioning information. It has been shown to be highly 
efective in other domains including images [31] and graphs such 
molecules and protein-protein interaction graphs [4]. In particular, 
TaNP [21] learns to map user interaction history to generate user-
specifc parameters, CMML [7] uses the same set of user-specifc 
parameters across diferent layers, and PNMTA [26] further lever-
ages pretrained encoder to capture generalized representation. By 
using FiLM, these methods can obtain user-specifc representation. 
which eliminates the necessity of fne-tuning by gradient descent. 
However, unlike images and graphs, scaling and shifting operations 
have unknown physical meaning in user interaction history. In 
other words, FiLM may not be the ideal modulation function in RSs. 

2.2 Neural Architecture Search 
Neural architecture search (NAS) targets at fnding an architecture 
with good performance without human tuning [16]. Recently, NAS 
methods have been applied in RSs. SIF [41] searches for interaction 
function in collaborative fltering, AutoCF [10] further searches for 
basic components including input encoding, embedding function, 
interaction function, and prediction function in collaborative flter-
ing. AutoFIS [22], AutoCTR [35] and FIVES [39] search for efective 
feature interaction in click-through rate prediction. AutoLoss [46] 
searches for loss function in RSs. Due to diferent problem settings, 
search spaces needs to problem-specifc and cannot be shared or 
transferred. Therefore, none of these works can be applied for user 
cold-start recommendation problem. To search efciently on the 
search space, one can choose reinforcement learning methods [1], 
evolutionary algorithms [30], and one-shot diferentiable architec-
ture search algorithms [23, 29, 42]. Among them, one-shot difer-
entiable architecture search algorithms have demonstrated higher 
efciency. Instead of training and evaluating diferent models like 
classical methods, they optimize only one supernet where the model 
parameters are shared across the search space and co-adapted. 

3 PROPOSED METHOD 
In this section, we present the details of ColdNAS, whose overall 
architecture is shown in Figure 1. In the sequel, we frst provide the 
formal problem formulation of user cold-start problem (Section 3.1). 
Then, we present our search space and theoretically show how to 
transform it (Section 3.2). Finally, we introduce the search algorithm 
to search for a good user cold-start model (Section 3.3). 

3.1 Problem Formulation 
Let user set be denoted U = {�� }, where each user �� is associated 
with user features. The feature space is shared across all users. Let 
item set be denoted V = {� � } where each item � � is also associated 
with item features. When a user �� rates an item � � , the rating is 
denoted ��, � . In user cold-start recommendation problem, the focus 
is to make personalized recommendation for user �� who only has 
rated a few items. 

Following recent works [3, 21, 24], we model the user cold-start 
recommendation problem as a few-shot learning problem. The 
target is to learn a model from a set of training user cold-start tasks 
T train 

and generalize to provide personalized recommendation for 

new tasks. Each task �� corresponds to a user �� , with a support set 
S� = {(� � , ��, � )}� 

=1 containing existing interaction histories and a 
� 

query set Q� = {(� � , ��, � )}� 
=1 containing interactions to predict. � 
� 

and � are the number of interactions in S� . Q� and � are small. 

3.2 Search Space 
Existing modulation-based user cold-start works can be summa-

rized into the following modulation framework consisting of three 
parts, i.e., embedding layer, adaptation network and predictor, as 
plotted in Figure 1. 

• The embedding layer � with parameter �� embeds the categorical 
features from users and items into dense vectors, i.e., (�� , � � ) = 
� (�� , � � ; �� ). 

• The adaptation network � with parameter �� takes the support 
set S� for a specifc user �� as input and generates user-specifc 
adaptive parameters, i.e., 

�� = {��
� }� = �(S� ; ��), (1)
�=1 

where � is the number of adaptive parameter groups for certain 
modulation structure. 

• The predictor � with parameter �� takes user-specifc parame-

ters �� and �� ∈ Q� from the query set as input, and generate 
predictions by 

�̂�, � = � ((�� , �� ), �� ; �� ) . (2) 

Comparing with classical RS models, the extra adaptation net-
work is introduced to handle cold-start users. To make personalized 
recommendation, for each �� , the support set S� is frst mapped to 
user-specifc parameter �� by (1). Then taking the features of target 
item �� ∈ Q� , user features �� , and the �� , prediction is made as (2). 
Subsequently, how to use the user-specifc parameter �� to change 
the prediction process in (2) can be crucial to the performance. Usu-
ally, a multi-layer perception (MLP) is used as � [5, 13, 21]. Assume 
a �-layer MLP is used and �� denotes its output from the �th layer, 
and let �0 = (�� , �� ) for notation simplicity. For the �th user, ��+1 

is modulated as 

�� = �� (�� , �� ), (3)� 

��+1 = ReLU(�� ��� + �� ), (4)� � 

where �� is the modulation function, �� 
and �� are learnable 

weights at the �th layer. This �� controls how �� is personalized 
w.r.t. the �th user. The recent TaNP [21] directly lets �� 

in (3) adopt 
the form of FiLM for all � MLP layers: 

�� = �� ⊙ �1 + �2 
(5)� � � . 

FiLM applies a feature-wise afne transformation on the inter-
mediate features, and has been proved to be highly efective in 
other domains [4, 31]. However, users and items can have diverse 
interaction patterns. For example, both the inner product and sum-

mation have been used in RS to measure the preference of user over 
items [15, 18]. 

In order to fnd the appropriate modulation function, we are 
motivated to search �� for diferent recommendation tasks. We 
design the following space for �� 

: 

�� = �� ◦
op

1 �1 ◦
op

2 �2 · · · ◦
op

� �� 
(6)� � � � , 
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where op
𝑖
’ are defined as { 	}

◦op ∈ O ≡ max,min, ⊙, /, +,− .
𝑖

They are all commonly used simple dimension-preserving binary 
operations. We choose them to avoid the resultant �� 

being too 
complex, which can easily overft for cold-start users. 

The search space in (6) can be viewed as a binary tree, as shown 
in Figure 2(a). Since �� 

can be diferent for each layer, the size of 
this space is 6� ×�

. A larger � leads to a larger search space, which 
has higher potential of containing appropriate modulation function 
but is also more challenging to search efectively. 

3.3 Search Strategy 
We aim to fnd an efcient and practicable search algorithm on 
the proposed search space. However, the search space can be very 
large, and diferentiable NAS methods are known to be fragile on 
large spaces [43]. In the sequel, we propose to frst transform the 
original search space to an equivalent but much smaller space, as 
shown in Figure 2(a), where the equivalence is inspired by some 
similarities between the operations and the expressiveness of deep 
neural networks. On the transformed space, we design a supernet 
structure to conduct efcient and robust diferentiable search. 

3.3.1 Search Space Transformation. Though the aforementioned 
search space can be very large, we can transform it to an equiv-
alent space of size 24×� 

which is invariant with � , as proved in
Proposition 3.11 

below.

Proposition 3.1 (Search Space Transformation). Assume the
adaptation network � is expressive enough. Any �� with a form of 
(6) where ◦op� ∈ O, � is any non-negative integer, and �� ∈ �� =� 
�(S� , ��), can be represented as

ˆ ˆ��� = min(max(�� , �� 
1), �� 

2) ⊙ �̂ 
� 
3 + �̂ 

� 
4 , (7) 

and the above four operations are permutation-invariant. 

The intuitions are as follows. First, operations in O can be divided 
into four groups: �1 = {max}, �2 = {min}, �3 = {+, −}, �4 =

{⊙, /}. Then, with mild assumption on adaptation network, we can 
prove two important properties: (i) inner-group consistence: opera-
tions that in the same group can be associated; and (ii) inter-group 
permutation-invariance: operations that are not in the same group 
are permutation-invariant which means any two operations can 
switch with another. Thus, we can recurrently commute operations 
until operations in the same group are neighbors, and associate 
operations in the four groups respectively. 

Remark 1. To better understand Proposition 3.1, let us check two
examples. 

(1) min(max(�� , �1) + �2 − �3 �4) ⊙ �5 equals to (7) where
� � � , � � 

ˆ ˆ ˆ ˆ�1 = �1 �2 = �4 − �2 + �3 �3 = �5 �4 = (�2 − �3) ⊙ �5;
� � , � � � � , � � , � � � � 

and 
(2) max(min(�� + �1 �2), �3) ⊙ �4 also equals to (7) where

� , � � � 
�̂1 = �3 − �1 �̂2 = �2 − �1 �̂3 = �4 �̂4 = �1 ⊙ �4 
� � � , � � � , � � , � � � . 

Note that due to the universal approximation ability of deep 
network [14], the assumption in this proposition can be easily 

1
The proof is in Appendix B.

satisfed. For example, we implement � based on two-layer MLP in 
experiments (see Appendix A.2), which can already ensure a good 
performance (see Section 4.3.3). After the transformation, the space 
in (7) also spans a permutation-invariant binary tree, as plotted 
in Figure 2(b). Such a space can be signifcantly smaller than the 
original one, as explained in Remark 2 below. 

Remark 2. The space transformation plays an essential role in
ColdNAS, Table 1 helps to better understand to what extent the propo-
sition can help reduce the search space, we take layer number � = 4

original space 6
� ×4

and the ratio is calculated as = transformed space 2
4×4 .

Table 1: The reduction ratio w.r.t diferent �. 

� 1 2 3 4 5 

5.6×1010 7.2×1013Ratio 2.0×10−2 2.6×101 3.3×104 4.3×107

Note that when � = 1, the transformation will not lead to a reduc-
tion on the space. However, such a case is not meaningful as it sufers 
from poor performance due to lack of fexibility for the modulation 
function (see Section 4.3.2). The transformed spaces enable efcient 
and robust diferentiable search, via reducing the number of architec-
ture parameter from 6 × � × � to 4 × �. Meanwhile, the space size is
transformed from 6� ×� to 24×� , which is a reduction for any � > 1.

3.3.2 Construction of the Supernet. For each �� 
, since there are 

4 operations at most and they are permutation-invariant, we only 
need to decide whether to take the operation or not by any order. 
We search by introducing diferentiable parameters to weigh the op-
erations and optimize the weights. For the �th layer of the predictor, 
we have 

�̂�,�+1=��,�+1 (�̂�,� ◦
op

�+1 ��+1)+(1−��,�+1)�̂�,� , (8)� 

where ��,�+1 
is a weight to measure operation ◦

op
� +1 in �� 

, � ∈
{0, 1, 2, 3} and {◦

op
�+1 }3 = {max, min, ⊙, +}. For notation sim-

�=0 
��,0 �� , �� �̂�,4plicity, we let ˆ = = . We construct the supernet by

� 
replacing (3) with (8), i.e., replacing every �� in red dotted lines in 
Figure 1 with the structure shown in Figure 2 (c). 

3.3.3 Complete Algorithm. The complete algorithm is summarized 
in Algorithm 1. We frst optimize the supernet and make selec-
tion to determine the structure, then reconstruct the model with 
determined structure and retrain it to inference. 

Benefted from the great reduction brought by the space transfor-
mation, while conventional diferentiable architecture search [23] 
optimizes the supernet w.r.t. the bilevel objective with the upper-
level variable � and lower-level variable � : 

min Lval (� ∗(� ), � ), s.t. � ∗(� ) = argmin Ltrain (� , � ), (9)

� � 

where Lval 
and Ltrain 

represent the loss obtained on validation
set and training set respectively, we only need to optimize the 
supernet w.r.t. objective Ltrain 

only, in an end-to-end manner by
∈ T trainepisodic training. For every task �� , we frst input S� to

the adaptation network � to generate �� by (1), and then for every
item � � ∈ Q� , we take (�� , � � ) and �� as input of the predictor � and

6 
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(a) Original search space. (b) Transformed search space. (c) A layer in supernet. 

Figure 2: Illustration of our proposition 3.1, and the structure of the supernet to search on the reduced space. 

Algorithm 1 Training procedure of ColdNAS.

Input: Learning rate � , number of operations to keep � .
1: Construct the supernet by (8) and randomly initialize all pa-

rameters � = {{��,� }
� 
4,� 
=1 
− 
,� 
1 
=0
, �� , ��, �� }.

2: while Not converge do
3: for Every �� ∈ T train do
4: Calculate �� by (1).
5: Calculate �̂�, � for every � � in Q� by (2).
6: Calculate loss L� by (10).
7: end for 

Ltrain 1 Í | Ttrain |
8: = | Ttrain | �=1

L� 
9: Update all parameters � ← � − �∇

�
Ltrain

.

10: end while 
11: Determine the modulation structure by keeping operations 

corresponding to Top-� ��,� 
and remove the others. 

12: Construct the model with determined modulation structure 
and randomly initialize all parameters � = {�� , ��, �� }.

13: Train the model in the same way as Step 2 ∼ 10. 
14: Return: The trained model.

make prediction by (2). Then, we use mean squared error (MSE) 
between the prediction �̂�, � and true label ��, � as loss function:

1 ∑� 
L� = (��, � − �̂�, � )2 , (10)

� �=1 Í
and Ltrain = �� ∈Ttrain L� . We update all parameters by gradient

descent. Once the supernet converges, we determine all �� 
s jointly 

by keeping the operation corresponding to the Top-� largest values 
among the 4×� values in {��,�+1}4,�−1 

=0
. We then retrain the model

�=1,�

to obtain the fnal user cold-start model with searched modulation 
structure. During inference, a new set of tasks T test is given, which

∈ T testis disjoint from T train. For �� , we take the whole S� and
(�� , � � ) as input to the trained model to obtain prediction �̂�, � for
each item � � ∈ Q� .

3.4 Discussion 
Existing works in space transformation can be divided into three 
types. One is using greedy search strategy [9]. Methods of this kind 
explore diferent groups of architectures in the search space greed-
ily. Thus, they fail to explore the full search space and can easily 
fall into bad local optimal. Another is mapping the search space 
into a low-dimensional one. For examples, using auto-encoder [25] 
or sparse coding [40]. However, these types of methods do not 
consider special properties of the search problem, e.g., the graph 

structure of the supernet. Thus, the performance ranking of archi-
tectures may sufer from distortion in the low-dimensional space. 
ColdNAS belongs to the third type, which is to explore architecture 
equivalence in the search space. The basic idea is that if we can 
fnd a group of architectures that are equivalent with each other, 
then evaluation any one of them is enough for all architectures 
in the same group. This type of methods is problem-specifc. For 
example, perturbation equivalence for matrices is explored in [45], 
morphism of networks is considered in [17]. The search space of 
ColdNAS is designed for modulation structures in cold-start prob-
lem, which has not been explored before. We theoretically prove 
the equivalence between the original space and the transformed 
space, which then signifcantly reduces the space size (Remark 2). 
Other methods for general space reduction cannot achieve that. 

4 EXPERIMENTS 
We perform experiments on three benchmark datasets with the aim 
to answer the following research questions: 

• RQ1: What is the modulation structure selected by ColdNAS and
how does ColdNAS perform in comparison with the state-of-the-
art cold-start models?

• RQ2: How can we understand the search space and algorithm of
ColdNAS?

• RQ3: How do hyperparameters afect ColdNAS?

Results are averaged over fve runs.

4.1 Datasets 
We use three benchmark datasets (Table 4): (i) MovieLens [12]: a
dataset containing 1 million movie ratings of users collected from 
MovieLens, whose features include gender, age, occupation, Zip 
code, publication year, rate, genre, director and actor; (ii) BookCross-
ing [47]: a collection of users’ ratings on books in BookCrossing
community, whose features include age, location, publish year, au-
thor, and publisher; and (iii) Last.fm: a collection of user’s listening
count of artists from Last.fm online system, whose features only 
consist of user and item IDs. Following Lin et al. [21], we generate 
negative samples for the query sets in Last.fm. 

Data Split. Following Lin et al. [21], the ratio of T train 
: T val :

T test is set as 7 : 1 : 2. T val is used to judge the convergence
, T valof supernet. T train , T test contain no overlapping users. For

MovieLens and Last.fm, we keep any user whose interaction history 
length lies in [40, 200]. Each support set contains � = 20 randomly 
selected interactions of a user, and query set contains the rest 
interactions of the same user. As for BookCrossing with severe long-
tail distribution of user-item interactions, we particularly put any 
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Table 2: Test performance (%) obtained on benchmark datasets. The best results are highlighted in bold and the second-best in 
italic. For MSE and MAE, smaller value is better. For nDCG3 and nDCG5, larger value is better. 

Dataset Metric DropoutNet MeLU MetaCS MetaHIN MAMO TaNP ColdNAS-Fixed ColdNAS 

MovieLens 

BookCrossing 

Last.fm 

MSE 

MAE 

nDCG3

nDCG5

MSE 

MAE 

nDCG3

nDCG5

MSE 

MAE 

nDCG3

nDCG5

100.90(0.70) 

85.71(0.48) 

69.21(0.76) 

68.43(0.48) 

15.38(0.23) 

3.75(0.01) 

77.66(0.18) 

80.87(0.15) 

21.91(0.38) 

43.02(0.52) 

75.13(0.48) 

69.03(0.31) 

95.02(0.03) 

77.38(0.25) 

74.43(0.59) 

73.52(0.41) 

15.15(0.02) 

3.68(0.01) 

77.69(0.15) 

81.10(0.15) 

21.69(0.34) 

42.28(1.21) 

80.15(2.09) 

75.03(0.68) 

95.05(0.04) 

77.42(0.26) 

74.46(0.78) 

73.45(0.56) 

15.20(0.08) 

3.66(0.01) 

77.68(0.12) 

80.97(0.09) 

21.68(0.12) 

42.28(0.76) 

80.81(0.97) 

75.01(0.64) 

91.89(0.06) 

75.79(0.27) 

74.69(0.32) 

73.63(0.22) 

14.76(0.07) 

3.50(0.01) 

77.66(0.19) 

80.95(0.04) 

21.43(0.23) 

42.07(0.49) 

82.01(0.56) 

75.98(0.33) 

90.20(0.22) 

75.34(0.26) 

74.95(0.13) 

73.84(0.16) 

14.82(0.05) 

3.51(0.02) 

77.68(0.09) 

81.01(0.05) 

21.64(0.10) 

42.30(0.28) 

80.73(0.80) 

75.45(0.29) 

89.11(0.18) 

74.78(0.14) 

75.60(0.07) 

74.29(0.12) 

14.75(0.05) 

3.48(0.01) 

77.48(0.06) 

81.16(0.21) 

21.58(0.20) 

42.15(0.56) 

81.03(0.36) 

75.98(0.41) 

91.05(0.13) 

75.65(0.30) 

75.11(0.09) 

73.89(0.12) 

14.44(0.16) 

3.49(0.02) 

77.65(0.09) 

81.12(0.06) 

21.62(0.16) 

42.32(0.34) 

80.77(0.32) 

75.48(0.21) 

87.96(0.12) 

74.29(0.20) 

76.16(0.03) 

74.74(0.09) 

14.15(0.08) 

3.40(0.01) 

77.83(0.01) 

81.32(0.10) 

20.91(0.05) 

41.78(0.24) 

82.80(0.69) 

76.77(0.10) 

Table 3: Modulation structure with Top-4 operations searched on the three benchmark datasets respectively. We also show the
modulation structure of ColdNAS-Fixed, which is the same regardless of the dataset used. 

�0 �1 �2 �3

0,1 0,2 0,3 1,1
MovieLens min(max(�0 , � ), � ) + � �1 + � �2 �3

� � � � 
0,1 1,1 2,1 2,2

BookCrossing min(�0 , � ) �1 + � �2 ⊙ � + � �3
� � � � 

0,1 1,1 2,1 2,2
Last.fm �0 + � �1 + � max(�2 , � ) + � �3

� � � � 
0,1 0,2 1,1 1,2 2,1 2,2 3,1 3,2

ColdNAS-Fixed �0 ⊙ � + � �1 ⊙ � + � �2 ⊙ � + � �3 ⊙ � + � 
� � � � � � � � 

Table 4: Summary of datasets used in this paper. 

Dataset # User (Cold) # Item # Rating # User Feat. # Item Feat. 

MovieLens 6040 (52.3%) 3706 1000209 4 5 

BookCrossing 278858 (18.6%) 271379 1149780 2 3 

Last.fm 1872 (15.3%) 3846 42346 1 1 

user whose interaction history length lies in [50, 1000) into T train.
Then, we divide users with interaction history length in [2, 50) into 

, T val70%, 10% and 20% to be put in T train 
, T test respectively. The

proportion of cold users in each dataset is also shown in Table 4. 
Then, we randomly select half of each user’s interaction history as 
support set and take the rest as query set. 

Evaluation Metric. Following [19, 26], we evaluate the performance 
by mean average error (MAE), mean squared Error (MSE), normal-

ized discounted cumulative gain nDCG3 and nDCG5. MAE and
MSE evaluate the numerical gap between the prediction and the 
ground-truth rating, lower value is better. For nDCG3 and nDCG5,

the higher value is better, representing the proportion between 
the discounted cumulative gain of the predicted item list and the 
ground-truth list. 

4.2 Performance Comparison (RQ1) 
We compare ColdNAS with the following representative user
cold-start methods: (i) traditional deep cold-start model Dropout-
Net [36] and (ii) FSL based methods include MeLU [19], MetaCS
[3], MetaHIN [24], MAMO [6], and TaNP [21]. We run the public
codes provided by the respective authors. PNMTA [26], CMML [7], 
PAML [37] and REG-PAML [44] are not compared due to the lack 
of public codes. We choose a 4-layer predictor, more details of our 
model and parameter setting are provided in Appendix C.1. We also 
compare with a variant of ColdNAS called ColdNAS-Fixed, which
uses the fxed FiLM function in (5) at every layer rather than our 
searched modulation function. 

Table 2 shows the overall user-cold start recommendation per-
formance for all methods. We can see that ColdNAS signifcantly 
outperforms the others on all the datasets and metrics. Among all 
compared baselines, DropoutNet performs the worst as it is not a 
few-shot learning method that the model has no ability to adapt 
to diferent users. Among meta-learning based methods, MeLU, 
MetaCS, MetaHIN and MAMO adopt gradient-based meta-learning 
strategy, which may sufer from overftting during local-updates. 
In contrast, TaNP and ColdNAS learn to generate user-specifc pa-
rameters to guide the adaptation. TaNP uses a fxed modulation 
structure which may not be optimal for diferent datasets, while 
ColdNAS automatically fnds the optimal structure. Further, the 
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(a) MovieLens. (b) BookCrossing. (c) Last.fm.

Figure 3: Testing MSE vs clock time of diferent search strategies. ColdNAS, ColdNAS-bilevel and Random-t operate on the 
transformed space, while Random operates on the original space with � = 4 in every �� .

consistent performance gain of ColdNAS over ColdNAS-Fixed vali-
dates the necessity of searching modulation structure to ft datasets 
instead of using a fxed one. 

Table 3 shows the searched modulation structures. We fnd that 
the searched modulation structures are diferent across the datasets. 
No modulation should be taken at the last layer, as directly use 
user-specifc preference possibly leads to overftting. Note that all 
the operations in the transformed search space have been selected 
at least once, which means all of them are helpful. 

Comparing time consumption to other cold-start models, Cold-
NAS only additionally optimizes a supernet with the same objective 
and comparable size. Table 5 shows the clock time taken by Cold-
NAS and TaNP which obtains the second-best in Table 2. As can be 
observed, the searching in ColdNAS is very efcient, as it is only 
slightly more expensive than retraining. 

Table 5: Clock time taken by ColdNAS and TaNP. 

Clock time (min) MovieLens BookCrossing Last.fm 

TaNP 15.5 44.2 4.1 

ColdNAS 
Search 16.2 45.5 3.9 

Retrain 12.7 35.5 3.5 

4.3 Searching in ColdNAS (RQ2) 
4.3.1 Choice of Search Strategy. In ColdNAS, we optimize (10) by 
gradient descent. In this section, we compare ColdNAS with other 
search strategies to search the modulation structure, including Ran-
dom (� = 4) which conducts random search [2] on the original
space with operation number � = 4 in each �� , Random (T) which
conducts random search [2] on the transformed space, ColdNAS-
Bilevel which optimizes the supernet with the bilevel objective
9. For random search, we record its training and evaluation time.

For ColdNAS and ColdNAS-bilevel, we sample the architecture
parameter of the supernet and retrain from scratch, and exclude the
time for retraining and evaluation. Figure 3 shows the performance

of the best searched architecture. One can observe that searching
on the transformed space allows higher efciency and accuracy,
comparing Random (T) to Random (� = 4). In addition, diferen-
tiable search on the supernet structure has brought more efciency,

as both ColdNAS and ColdNAS-Bilevel outperform random search.
ColdNAS and ColdNAS-Bilevel converge to similar testing MSE,

but ColdNAS is faster. This validates the efcacy of directly using
gradient descent on all parameters in ColdNAS.

4.3.2 Necessity of Search Space Transformation. Now that the search 
algorithm has been chosen, we now particularly examine the ne-
cessity of search space transformation in terms of time and perfor-
mance. As shown in Table 1, a larger � which constrains the number 
of operations will lead to a larger original space. And the space 
reduction ratio grows exponentially along with the original space 
size. Figure 4 plots the testing MSE vs clock time of random search 
on original spaces of diferent size (Random (� = �)), random search 
on transformed space (Random (T)), and our ColdNAS. When � is 
small, modulation functions would not be fexible enough, though 
it is easy to fnd the optimal candidate in this small search space. 
When � is large, the search space is large, where random search 
would be too time-consuming to fnd a good modulation structure. 
In contrast, the transformed search space has a consistent small size, 
and is theoretically proved to be equal to the space with any � . As 
can be seen, both Random (T) and ColdNAS can fnd good structure 
more efective than Random (� = 4), and ColdNAS searches the 
fastest via diferentiable search. 

4.3.3 Understanding Proposition 3.1. Here, we frst show that the 
assumption of adaptation network � being expressive enough can 
be easily satisfed. Generally, deeper networks are more expressive. 
Figure 6 plots the efect of changing the depth of the neural network 
in � on Last.fm. As shown in Figure 6 (a-d), although diferent 
number of layers in � are used, the searched modulation operations 
are the same. Consequently, the performance diference is small, 
as shown in Figure 6 (d). Thus, we use 2 layers which is expressive 
enough and has smaller parameter size. 

Further, we validate the inner-group consistence and permutation-

invariance properties proved in Proposition 3.1. Comparing Figure 6 
(a) with Figure 7 (a-b), one can see that changing ⊙ to / and + to −
obtains the same results, which validates inner-group consistency.
Finally, comparing Figure 6 (a) with Figure 7 (c), one can observe
that inter-group permutation invariant also holds.

4.4 Sensitivity Analysis (RQ3) 
Finally, we conduct sensitivity analysis of ColdNAS on Last.fm. 

Efects of � . Recall that we keep modulation operations correspond-
ing to the Top-� largest ��,� 

s in modulation structure. Figure 5(a) 
plots the efect of changing � . As shown, � cannot be too small 
that the model is unable to capture enough user-specifc preference, 
nor too large that the model can overft to the limited interaction 
history of cold-start users. 
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(a) MovieLens. (b) BookCrossing. (c) Last.fm.

Figure 4: Testing MSE vs clock time on various search spaces: transformed space, and original spaces with diferent �. 

(a) Varying � in Top-� . (b) Varying number of layers of the predictor. (c) Varying support set size during inference.

Figure 5: Model sensitivity analysis of ColdNAS on Last.fm. 

(a) 2 layers (chosen). (b) 3 layers. (c) 4 layers. 

(d) 5 layers. (e) Performance.

Figure 6: Efect of changing the depth of adaptation network 
on Last.fm. Figure 6 (a-d) shows the visualization of the {��,� }
obtained with varying depth, and Figure 6 (e) shows the test-
ing MSE obtained correspondingly. 

Efect of the Depth of Predictor. Figure 5(b) plots the efect of using 
predictors with diferent � number of layers. One can observe that 
choosing diferent � in a certain range has low impact on the per-
formance, while choosing � = 4 is already good enough to obtain 
the state-of-the-art results as shown in Table 2. 

Efects of Support Set Size. Figure 5(c) shows the performance of 
users with diferent length of history. During inference, we ran-
domly sample only a portion of interactions from the original sup-
port set S� of each �� in � test. As can be seen, prediction would be

(a) Changing + to -. (b) Changing ⊙ to /. (c) Permutated.

Figure 7: Visualization of the {��,� } obtained on Last.fm, 
where operations and orders are changed. 

more accurate given interaction history, which may alleviate the 
bias in representing the user-specifc preference. 

5 CONCLUSION 
We propose a modulation framework called ColdNAS for user cold-
start recommendation. In particular, we use a hypernetwork to map 
each user’s history interactions to user-specifc parameters, which 
are then used to modulate the predictor. We design a search space 
for modulation functions and positions, which not only covers 
existing modulation-based models but also has the ability to fnd 
more efective structures. We theoretically prove the space could 
be transformed to a smaller space, where we can search for modula-

tion structure efciently and robustly. Extensive experiments show 
that ColdNAS performs the best on benchmark datasets. Besides, 
ColdNAS can efciently fnd proper modulation structure for dif-
ferent data, which make it easy to be deployed in recommendation 
systems. 
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A DETAILS OF MODEL STRUCTURE 
As mentioned in Section 3.2, existing models [6, 21, 26] share an 
architecture consisting of three components: embedding layer �, 
adaptation network �, and predictor � . Here we provide the details 
of these components used in ColdNAS. 

A.1 Embedding Layer
We frst embed user and item’s one-hot categorical features into 
dense vectors through the embedding layer. Taking �� for example,

we generate a content embedding for each categorical content 
feature and concatenate them together to obtain the initial user 
embedding. Given � user contents, the embedding is defned as: 

�� �� = [ �1�1 | � 2�2 | · · · | �� ] (11)� � � � � � 

where [ · | · ] is the concatenation operation, �� 
is the one-hot 

� 
vector of the �th categorical content of �� , and �� 

represents the
�

embedding matrix of the corresponding feature in the shared user 
feature space. The parameters of embedding layer are collectively 
denoted as �� = {�� }� 

� �=1.

A.2 Adaptation Network
We frst use a fully connected (FC) layer to get hidden representation 
of interaction history ��, � , which is calculated as

��, � = ReLU(�1 [ �� | � � | ��, � ] + �1 ). (12)� � 

We use mean pooling to aggregate the interactions in S� as the task
1 Í� 

context information of �� , i.e.,preference, �� = ��, � . Then, we� 1 
use another FC layer to generate the user-specifc parameters as 
�� = � 2 �� + �2 

. The parameters of adaptation network is denoted
� � 

as �� = {�
� 
1 , �

� 
1 , �

� 
2 , �2 }.

� 

A.3 Predictor
We use a �-layer MLP as the predictor. Denote output of the �th 
layer hidden units as �� , the modulation function at the �th layer as 
�� , we obtain prediction by 

�� = �� (�� , �� ),� 

�� �� +1 = ReLU(�� 
� + �� ), (13)� � 

�� 
where � ∈ [0, 1, · · · � − 1], �0 = [�� | � � ] and �̂�, � = . The
parameters of predictor are denoted as �� = {�

�
� , �� }�−1 

� �=0 .

B PROOF OF THE PROPOSITION 3.1 
Proof. To prove Proposition 3.1, we need to use the two condi-

tions below: 
Condition 1: If �� 

is the input of operation ⊙ or /, then every
� 

element in �� 
is non-negative. We implement this as ReLU function. 

� 
Condition 2: The adaptation network � is expressive enough, that

� � � � 
it can approximate �ˆ� = � ◦

op
1 � , where ◦

op
1 ∈ O and �

� , � ∈ �� � � � 
learned from the data. This naturally holds due to the assumption. 

Divide ◦op into 4 groups: �1 = {max}, �2 = {min}, �3 =

{+, −}, �4 = {⊙, /}. We can prove two important properties below.

Property 1: Inner-group consistence. .We can choose an operation
in each group as the group operation ◦�� , e.g. ◦�1 = max, ◦�2 =

min, ◦�3 = +, ◦�4 = ⊙. Then any number of successive opera-
tions that belong to the same group �� can be associated into one
operation ◦�� , i.e.,

� ◦
op

� �� ◦
op

�+1 ��+1 · · · ◦
op

� +� ��+� = � ◦�� �̂� 
� � � � ,

� .� . ◦
op

� , ◦
op

� +1 · · · ◦
op

�+� ∈ �� 

It’s trivial to prove with condition 2, e.g., � + �1 − �2 + �3 = � + �̂1 
� � � � , 

where �̂1 = �1 − �2 + �3 
� � � � . 

Property 2: Inter-group permutation-invariance. The operations
in diferent groups are permutation-invariant, i.e., 

�� ��+1 �̂� �̂�+1� ◦�� � ◦�� � = � ◦�� � ◦�� � 

It is also trivial to prove with condition 1 and condition 2, e.g., 

ˆmax(�, �� 
1) + �� 

2 = max(� + �̂ 
� 
1 , �� 

2),

where �̂1 = �2 
and �̂2 = �1 + �2 

� � � � � . 
With the above two properties, we can recurrently commute 

operations until operations in the same group are gathered, and 
merge operations in the four groups respectively. So 

�� = �� ◦
op

1 �1 ◦
op

2 �2 · · · ◦
op

� �� 
� � � � 

equals to 
��� = �� ◦�1 �̂ 

� 
1 ◦�2 �̂ 

� 
2 ◦�3 �̂ 

� 
3 ◦�4 �̂ 

� 
4 ,

and the four group operations are permutation-invariant. 
Note that since the identity element (0 or 1) of each group op-

eration can be learned from condition 2, a modulation function 
that doesn’t cover all groups can also be represented in the same 
form. □

C EXPERIMENTS 

C.1 Experiment Setting
Experiments were conducted on a 24GB NVIDIA GeForce RTX 3090 
GPU, with Python 3.7.0, CUDA version 11.6. 

C.1.1 Hyperparameter Seting. We fnd hyperparameters using the
T val via grid search for existing methods. In ColdNAS, the batch
size is 32, �� 

in (11) has size 32 × |�� | where |�� | is the length of 
� � � 

��
� . The dimension of hidden units in (13) is set as �1 = 128, �2 =

64, �3 = 32 for all three datasets. The learning rate � is chosen from
{5 × 10−6 , 1 × 10−5 , 5 × 10−5 , 1 × 10−4} and the dimension of ��, � in
(12) is chosen from {128, 256, 512, 1024}. The fnal hyperparameters

chosen on the three benchmark datasets are shown in Table 6. 

C.1.2 URLs of Datasets and Baselines. We use three benchmark

datasets (Table 4): (i) MovieLens2 
[12]: a dataset containing 1

million movie ratings of users collected from MovieLens, whose 
features include gender, age, occupation, Zip code, publication year, 
rate, genre, director and actor; (ii) BookCrossing3 

[47]: a collection
of users’ ratings on books in BookCrossing community, whose 
features include age, location, publish year, author, and publisher; 
and (iii) Last.fm4

: a collection of user’s listening count of artists

2
https://grouplens.org/datasets/movielens/1m/

3
http://www2.informatik.uni-freiburg.de/~cziegler/BX/

4
https://grouplens.org/datasets/hetrec-2011/
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(a) Varying � in Top-� . (b) Varying number of layers of the predictor. (c) Varying support set size during inference.

Figure 8: Model sensitivity analysis on MovieLens. 

(a) Varying � in Top-� . (b) Varying number of layers of the predictor. (c) Varying support set size during inference.

Figure 9: Model sensitivity analysis on BookCrossing. 

Table 6: The fnal hyperparameters chosen in ColdNAS. 

Dataset MovieLens BookCrossing Last.fm 

� 5 × 10−5 5 × 10−6 1 × 10−4

��, � 1024 512 256 

� 1 
� 1024 × 289 512 × 161 256 × 65 

� 2 
� 2052 × 1024 1540 × 512 1156 × 256 

�1 
� 1024 512 256 

�2 
� 2052 1540 1156 

� 0
� 128 × 289 128 × 161 128 × 65 

� 1
� 64 × 128 64 × 128 64 × 128 

� 2
� 32 × 64 32 × 64 32 × 64 

� 3
� 1 × 32 1 × 32 1 × 32 

�0 
� 128 128 128 

�1 
� 64 64 64 

�2 
� 32 32 32 

�3 
� 1 1 1 

maximum iteration number 50 50 100 

from Last.fm online system, whose features only consist of user 
and item IDs. In experiments, we compare ColdNAS with the
following representative user cold-start methods: (i) traditional 

deep cold-start model DropoutNet5 
[36] and (ii) FSL based methods

include MeLU6 
[19], MetaCS [3], MetaHIN7 

[24], MAMO8 
[6],

and TaNP9 
[21]. MetaCS is very similar to MeLU, except that it

updates all parameters during meta-learning. Hence, we implement 
MetaCS based on the codes of MeLU. 

C.2 More Experimental Results
Here, we show empirical results of Section 4.4 of MovieLens and 
BookCrossing in Figure 8 and 9. The results of all three datasets 
show similar patterns and the same analysis and conclusions in 
Section 4.4 are applicable. 

C.3 Complexity Analysis
Denote the layer number of adaptation network as �� , the layer
number of predictor as �� , the support set size as � , and the query
set size as � . For notation simplicity, we denote the hidden size 
of each layer is the same as � . In the search phase (Algorithm 
1 step 2∼10), the calculation of �� of a task is � (����3), and
predicting each item costs � (�� �

3), so the average complexity

� ��
is � ((�� + )�3). Similarly, in the retrain (Algorithm 1 step

� 
� �� 

12∼13), the time complexity is also � ((�� + )�3). In total, the
� 

� �� 
time complexity is � ((�� + )�3).

� 

5
https://github.com/layer6ai-labs/DropoutNet

6
https://github.com/hoyeoplee/MeLU

7
https://github.com/rootlu/MetaHIN

8
https://github.com/dongmanqing/Code-for-MAMO

9
https://github.com/IIEdm/TaNP
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